
  

 
 

Abstract— People with upper-limb paralysis due 
to stroke have limited opportunities for rehabilitation. Most 
stroke survivors, however, still have intact corticospinal tract 
connectivity and can exhibit voluntary subthreshold muscle 
activations. Previous studies demonstrated that these people 
can regain a small but significant amount of recovery 
following non-invasive brain-machine interface (BMI) 
therapy that links brain activity patterns to the movement of 
the paretic limb in real-time [1], [2]. 

In this study, we sought to improve upon existing 
BMI therapies in four ways. First, we used an invasive 
intracortical multi-electrode array placed directly over areas 
of perilesional motor cortex with intact spinal cord 
projections, thereby improving the spatial and temporal 
resolution of the neural signals used for control. Second, we 
leveraged a seven degree-of-freedom rehabilitation robotic 
exoskeleton, increasing the complexity of movements that 
participants could practice. Third, we developed a novel 
hybrid brain-muscle decoding approach that leveraged a 
biomimetic model of how functional muscle activations drive 
movements, and used this to reinforce co-activation of brain 
and non-pathological muscle patterns [3]. Finally, we 
performed this rehabilitation over 45 months instead of the 
typical 6-8 weeks that most rehabilitation protocols use. Here 
we report methodological and preliminary clinical results 
from one severely-impaired chronic stroke participant. 

Clinical Relevance—This is a proof-of-concept (N=1) of a new 
BMI methodology for rehabilitation.  

I. INTRODUCTION 

Stroke is the leading cause of disability worldwide with a 
dramatic increase in the last decade. While there are many 
therapy options for people with mild-to-moderate upper limb 
impairment such as physical therapy, options for people with 
severe impairment are limited. Standard therapeutics typically 
leverage the first ~6 months following stroke (i.e. acute phase), 
which is associated with upregulation of neuroplastic 
mechanisms. Significant recovery following the acute phase 
(i.e. the “chronic phase”) is thought to be limited. Thus, people 
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who remain severely impaired past the acute phase have 
limited prospects for any recovery.  

Recent studies have challenged the view that recovery in the 
chronic phase is not possible. High-intensity, high-quality 
therapy (30 hours/week)  has demonstrated sustained 
improvements in arm impairment [4], though how long these 
benefits last is less clear [5]. Further, people who are 
chronically and severely impaired have demonstrated small 
but significant gains in through the use of non-invasive brain-
machine interface (BMI) therapies that link brain activity 
patterns to the movement of a worn orthosis on the paretic limb 
in real-time [1], [2]. Finally, in many people with chronic and 
severe paralysis, while their movement is limited, can still 
voluntarily produce muscle activity [6]. Altogether, these 
findings led us to hypothesize that an intensive, long-duration, 
brain-machine interface therapy that leverages brain and 
residual muscle activations would be able to set a new 
benchmark for what type of recovery is possible in the 
severely-impaired, chronic stroke population. Here we present 
the methods and preliminary results from a proof-of-concept 
study of this kind (N=1).  

II. APPROACH 

A. Hybrid BMI clinical trial rationale 
BMI robot therapies decode brain signals to move a wearable 
orthosis, thereby providing participants with feedback of their 
brain patterns through the sensation and vision of movement. 
Both factors, when then coupled with conventional physical 
therapy, are thought to contribute to improved outcomes 
possibly because participants learn to attempt movements in 
a more “movement-potent” state [1]. However, in typical non-
invasive BMI therapies, only “move” versus “non-move” can 
be decoded out from brain signals, limiting the specificity of 
the feedback that can be given.  

Here, we design a novel hybrid brain-muscle invasive BMI 
therapy. We hypothesize that by recording brain signals 
invasively, that our decoder can be more specific about not 
only “move” vs. “non-move”, but which direction, speed, and 
which effectors of the arm should be moved. We can then 
provide this specific feedback to the participant through a 7 
degree-of-freedom exoskeleton robot [7]. Lastly, instead of 

Universitario Cruces, Osakidetza (BIOEF), Bilbao, Spain 10. Neurology 
Department, Hospital Universitario Donostia, Osakidetza (BIOEF), Donostia-
San Sebastián, Spain 11. Unité de Recherche en Sciences de l’Ostéopathie 
(URSO), Faculté des Sciences de la Motricité, Université Libre de Bruxelles 
(ULB), Brussels, Belgium 12. Neurosurgery Department, Hospital Universitario 
Donostia, Osakidetza (BIOEF), Donostia-San Sebastián, Spain 13. Athenea 
Neuroclinics Donostia-San Sebastián, Spain. 

 

A novel brain-machine interface (BMI) system for motor rehabilitation in a severely 
impaired chronic stroke participant 

Preeya Khanna4,6, Nerea Irastorza-Landa1,2,3,5, Andrea Sarasola-Sanz1,2,3, Amaia Miguel7, Leire Santisteban7, Cristina 
Chueca7,8, Suraj Gowda4, Siddharth Dangi4, Iñigo Pomposo9, Adolfo López de Munain10,13, Joseph McIntyre2,5, Eduardo 

Ramos12, Ana Bengoetxea11,13, Jose M. Carmena4,6, Ander Ramos-Murguialday1,2,13 



  

just brain activity contributing to the decoded output of the 
BMI, we also leverage subthreshold muscle activations 
through multi-electrode surface electromyography (sEMG) 
recordings. sEMG activity is decoded using a biomimetic 
sEMG-to-kinematics decoder that has been trained from the 
participants’ healthy arm [3], [7]. Together we term the brain 
decoder and sEMG decoders running in parallel as the “hybrid 
brain-muscle decoder”.  Brain and muscle contribute 
approximately equally to the decoded output (Fig. 1B).  
 We hypothesized that extensive practice with this novel 
hybrid BMI decoder along with neurophysical therapy will 
serve to 1) reinforce stable, movement-specific brain patterns 
in a part of the brain with intact spinal cord connectivity, 2) 
reinforce stable, albeit subthreshold, biomimetic muscle 
patterns, 3) reinforce cortico-muscular correlations resulting 
in potentiated cortico-muscular connectivity, and finally 4) 
result in rehabilitation of the participant’s upper limb during 
movements outside the hybrid BMI setting (Fig. 1A).  

B. Hybrid BMI clinical trial overview 
This work was conducted as part of the ISMORE clinical trial 
approved by AEMPS (Spanish Agency of Medicine and 

Sanitary Products) registered online (link here). The trial 
recruits severely-impaired chronic stroke participants (>9 
months post-stroke) with paralysis of one hand (no residual 
active finger extension) and a Medical Research Council 
score of < 2 for upper limb movement. Participants undergo a 
non-invasive familiarization phase of ~2 months in which 
they practice exoskeleton brain-control using EEG patterns. 
At the end of this phase, they then undergo an invasive 
microelectrode array brain implant localized to a section of 
perilesional motor cortex that still has intact connectivity to 
the spinal cord (measured through diffusion tensor images, 
DTI). Using this implant, the participants then control the 
exoskeleton using just brain activity (100% brain), then 
hybrid brain and muscle activity (hybrid: 50% brain, 50% 
muscle), and then just muscle activity (100% muscle) (Fig. 
1C). Throughout all phases of the trial, participants receive 
exercise therapy based on central and spinal 
neurophysiological circuitry, mirror therapy, and 
biomechanical and soft tissue interventions. Here, we report 
the results from one participant who underwent the clinical 
trial from 2017 through 2021 (45-month duration).  

III. METHODOLOGY 

A. Hybrid BMI system architecture 
Key components of the BMI system architecture include the 
1) 7 degree-of-freedom robotic exoskeleton, 2) invasive 
microelectrode array and acquisition hardware, 3) sEMG 
recording electrodes and hardware, 4) BMI machine that 
aggregated data, was used to train decoders, and send 
commands to a visual feedback screen and the exoskeleton 
robot, 5) Decoding algorithms and approaches themselves. 
Below we review each of these components:  

1) Exoskeleton robot 
The robotic exoskeleton (Tecnalia, San Sebastian, Spain) was 
attached to the participant’s paretic upper limb as schematized 
in Fig. 1B. The robot allowed the patient to perform planar 
arm movements (2 DOFs) and rotations (1 DOF), wrist 
pronation and supination (1DOF), and thumb, index, and 
middle/ring/pinky finger flexion and extension (3 DOFs).  

2) Intracortical electrode array & acquisition hardware 
A Blackrock Utah array (NeuroPort, 1.5mm electrode length, 
4x4 mm size, 96 channels) was inserted into perilesional 
premotor cortex of the participant in the hand and arm area. 
The specific implantation site was determined through 
tractography performed on DTI, where the tract seeds were 
placed in the pons and traced up to cortex to identify sections 
of cortex with intact corticospinal tract connectivity. Once the 
implantation procedure was completed and following 3 days 
of recovery from surgery, the array was connected to the 
Neural Signal Processor system (Blackrock Microsystems), 
and signals were acquired at 30kHz and processed in the 
Cerebus software. Single and multi-unit action potentials 
were isolated by first bandpass filtering signals between 250-
6kHz and either manually spike sorting or setting a threshold 
of -5 RMS. For the first year of the trial, units were identified 
via manual spike sorting at the start of each session. 
Following the first year, once recordings stabilized, an 
automatic threshold crossing approach was used for 

 
Figure 1. A) Rationale of long-duration hybrid BMI therapy, B) hybrid 
brain-muscle BMI decoder architecture C) Overview of invasive therapy 
including transition from brain-only decoding (purple), to hybrid brain and 
muscle decoding (blue/green), to muscle-only decoding (yellow). In some 
phases only neurophysical therapy was given (gray). D) Therapy intensity 
by phase. 
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expediency. Spike sorted or unsorted threshold data was 
streamed to the BMI computer over ethernet. In this paper we 
refer to single-units, multi-units, or threshold crossings 
generally as “neural units”.  

3) sEMG recording electrodes & acquisition hardware 
At the start of each session, 14 pairs of surface Ag/AgCl 
bipolar electrodes (Norotrode 20, Myotronics) were placed on 
the following upper limb muscles: First dorsal interosseous, 
Abductor pollicis longus, Extensor carpi ulnaris, Extensor 
carpi radialis, Extensor digitorum, Flexor digitorum 
superficialis, Flexor carpi radialis, Pronator teres, Biceps, 
Triceps, Deltoid anterior, Deltoid medialis, Teres major, and 
Pectoralis major. Electrode positions were marked using 
permanent marker on the skin to reduce session-to-session 
drift in electrode placement. A ground electrode was placed 
on the clavicle. Data was acquired at 1000 Hz by a BrainAmp 
system (BrainVision) and streamed into the BMI computer 
over ethernet. EMG features were computed on the BMI 
computer and included mean absolute value, variance, 
waveform length, root mean square, and Willison amplitude.  

4) BMI computer 
Data from the intracortical array and sEMG sensors was 
aggregated on the BMI machine running a custom python 
interface. Data streams were acquired in parallel processes, 
pre-processed, ported to their respective decoders, and finally 
combined (if hybrid). Prior to sending the velocity commands 
to the exoskeleton, a previously-defined user-specific safety 
boundary was consulted to ensure that the exoskeleton would 
not move into a position or at a velocity that was 
uncomfortable for the participant. The exoskeleton velocities 
were updated at a rate of 20 Hz. 

The BMI machine also ran the task logic for the 
exoskeleton training paradigm. The task was typically a target 
acquisition task in which the target consisted of a specific 
location/angle of all 7 DOFs, and a subset of DOFs were 
required to enter the target with certain tolerance to be 
considered a successful acquisition. As the participant grew 
more proficient and comfortable in the exoskeleton, target 
locations/angles were made further and further from the 
consistent “home” location.  

The BMI machine also rendered a visual graphic of the 
target exoskeleton and the current position/orientation of the 
exoskeleton that the participant was controlling. This 
visualization updated in real-time, giving the participant clear 
feedback about which DOFs were in vs. out of the target.   

5) Brain, muscle, and hybrid decoding algorithms 
The brain decoder was a velocity Kalman filter decoder 

designed to predict exoskeleton position and velocity (hidden 
state) based on population spike counts binned in 100ms bins 
(observations). As in [8], both position and velocity were 
included in the hidden state to account for the influence of 
both on brain activity, but the participant directly controls 
velocity with measured neural signals. The decoder was 
trained and adapted using existing methods [9], [10]. 
Specifically, to train the decoder, once spike sorting or 
thresholding was completed at the beginning of each session, 
the participant was asked to attend to and actively try to 
generate appropriate muscle activity as the exoskeleton 
played through a series of pre-programmed movements 

involving all degrees of freedom. We refer to this type of 
block as “compliant movements”. Once the decoder was 
trained, a block of closed-loop decoder adaptation with a 
linearly decreasing assist was run. Once control was 
acceptable (similar to previous sessions), the decoder was 
fixed for that session. In early phases (e.g. 2, 3, 4) decoder 
seeding and adaptation were run daily. In later sessions when 
neural unit recordings had stabilized, daily decoder re-seeding 
and adaptation were stopped. The same decoder was then 
used day-to-day.  
 The sEMG decoder was a linear regression model that 
predicted kinematic velocities to send to the exoskeleton 
every 50ms from sEMG features. Two different variants of 
the sEMG decoder were devised: 1) prediction of kinematic 
velocities directly from sEMG features, 2) prediction of 
kinematic state (e.g. open vs. close hand) that was then 
mapped onto kinematic velocities. Both decoders were 
trained from sEMG signals recorded from the participant’s 
unaffected (left) arm while they were wearing a left-armed 
exoskeleton and performing blocks of “compliant 
movements”. Notably, when the decoders were trained the 
sEMG features were z-scored. Thus, even though the 
participant could not generate the same levels of amplitude or 
modulation with their paretic limb as they could with their 
unaffected limb, the decoders would successfully predict 
kinematics if the relative activities of the muscles were correct 
(e.g. agonists activating, antagonists inhibiting). If the 
participant had developed muscle synergy patterns that were 
not typical of healthy muscle patterns (e.g. agonist antagonist 
co-activation), the robot would not move, encouraging the 
participant to try to generate more biomimetic muscle 
patterns.  Generally, the first type of decoder (directly predict 
kinematics) performed well for kinematics of the upper arm 
DOFs (planar arm translation and rotation, 
pronation/supination) whereas the second type of decoder 
(predict states) performed better for kinematics of the hand 
DOFs (finger extension/flexion).  
 The hybrid decoder initially linearly combined predicted 
velocities from the brain and muscle decoders’ outputs 
(equation 1). After sufficient practice though, it became 
apparent that the participant could just rely on one type of 
signal (brain or muscle) to advance the exoskeleton towards 
the target location. To encourage co-activation, a new 
multiplicative rule was introduced mid-way through the trial 
that required the brain and muscle signals to both be 
advancing towards the target for the exoskeleton to move 
(equation 2).  
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B. Adjuvant neurophysical therapy  
Prior to and following hybrid BMI sessions, four trained 
physiotherapists and one osteopath provided customized, 
complementary therapy that targeted stretching the soft 
tissues and tendons, practicing active movements outside of 



  

the exoskeleton, mirror therapy, and focusing on functional 
movements that could not be trained in the robotic 
exoskeleton. As previous studies have hypothesized that BMI 
therapies serve as a ‘priming’ of the sensorimotor system for 
improved learning and rehabilitation from physical therapy 
[1], it was important to our study to have high-quality, high-
dosage, neuro-biomechanical therapy along with the BMI.  

C. Participant 1 
Participant #1 was a woman who suffered an ischemic stroke 
at the age of 55. The stroke affected cortico-subcortical 
structures in the left fronto-posterior and parietal areas 
resulting in severe hemiplegia of her right upper limb. She had 
a NIHSS score of 5, spasticity in her hand, and preserved 
somatosensation, as confirmed by a neurologist. After 
discharge from the stroke unit, the patient received a series of 
inpatient and outpatient rehabilitation therapies over the 
following 7 months, which ended with a stable severe upper 
limb paresis. At the time of enrollment in the clinical trial, the 
patient was 59 years old, had not received any rehabilitative 
treatment during the previous 39 months and remained 
chronically impaired (46 months since stroke). She presented 
an averaged baseline upper-limb modified Fugl-Meyer 
assessment (mFMA-UE) motor score of 9, MRC < 2 for upper 
limb movement, an ARAT score of 0, and a Wolf Motor 
Function Test (WMFT) score (excluding weigh to box and 

grip strength) score of 13.5. The participant presented no 
residual finger extension nor movement of the hand, almost 
zero elbow and shoulder flexion/extension ability and severe 
spasticity of the upper arm that impeded the use of the paretic 
upper limb and hand in functional unimanual or bimanual 
tasks.  

D. Data analysis  
Since the participant was very focused on improving hand 
opening and closing, there are many hBMI sessions dedicated 
to training that movement. In Fig. 2, neural units and muscle 
features were analyzed during hand-open and hand-close 
hBMI blocks. 

Neural units were summed in bins of 100ms (same update 
rate as the brain decoder). Muscle features were calculated 
in bins of 50ms and were z-scored based on the mean and 
standard deviations computed from a block of the same 
compliant movements performed at the beginning of each 
session.  

Neural units or sEMG features were averaged across the 
first 5 seconds of an open or close trial and were aggregated 
over all trials on a particular session. In Fig. 2B, units or 
features were considered “tuned” if they showed significantly 
(measured by p < 0.05 on a Mann-Whitney U test ) different 
patterns between hand-open and hand-close. In Fig. 2D, 
neural units and sEMG trials were subsampled and averaged 

Figure 2. A) Average firing pattern for open (red) vs. close (blue) for units recorded on Day 41 (phase 1) vs. Day 658 (Phase 10). B) Fraction of units and 
muscle features that are have significantly different patterns for open vs. close significantly increases over hBMI training (t-test for significant slope: left: 
N=234 sessions, p < 0.001, right, N = 254, p < 0.001) C) Within-session average firing pattern for open vs. close for units recorded after change from 
manual spike sorting to threshold crossing. Same units recorded, same unit ordering. D) Within-session pattern consistency is measured by using a trial-
average template to predict held-out trial patterns. The correlation coefficient of the prediction significantly increases over recovery for single-unit brain 
patterns and sEMG features (t-test for significant slope: left: N = 234 sessions, p < 0.001, right: N = 254, p < 0.001). E) Using ridge regression to quantify 
the predictability of sEMG features from brain single-unit activity. F) Predictability of sEMG features significantly increased over the hBMI trial (t-test for 
significant slope: N = 134, p < 0.001) G) Many muscle features become more predictable.   

 



  

to create an open and close trial-averaged template. The 
correlation between this template and held-out trials was 
computed. This process was repeated 50 times with different 
subselections of trials, and averaged to yield a single 
correlation coefficient value for each session. A similar 
approach was taken in Fig. 2F but instead of a template, a set 
of Ridge regression models were fit from population brain 
activity (z-scored, according to means/standard deviations 
derived from a compliant block) to predict individual sEMG 
features (Fig. 2E). Held out data was predicted with the Ridge 
models and variance explained (R2) aggregated over sEMG 
features (Fig. 2F) and displayed for each sEMG feature (Fig. 
2G) is shown.  

IV. RESULTS 

A. Trial duration 
The clinical trial was run in participant #1 for 45 months (July 
2017 – March 2021). The initial months included a battery of 
clinical scales, neuroimaging, and a non-invasive BMI 
familiarization phase. After array implantation in Sept 2017, 
Fig 1D shows the average number of hours per week that the 
participant underwent therapy interventions. Though initially 
very intense with a peak of 25 hrs/week, the therapy plateaued 
to become more sustainable at ~8 hrs / week for most of the 
months. To our knowledge this is the longest therapeutic 
intervention ever attempted in a stroke patient.  

B. Significant modulation of brain and muscle patterns 
with long-term hBMI therapy 

Since the hBMI therapy required both brain and muscle 
patterns to modulate to enable the exoskeleton to reach 
targets, we first tested how the number of recorded neural 
units and muscle features changed in their modulation over 
the course of the trial. Fig. 2A shows an example of the 
average firing pattern for the population of neural units during 
open (red) vs. close (blue) trials early in the trial (left, Day 41, 
Phase 1) and late in the trial (right, Day 658, Phase 10). While 
the population consists of different units, more units show 
different firing during open vs. close later in the trial. We 
quantified this effect for brain units and muscle features (Fig. 
2B) and found that over the course of the trial both brain and 
muscle activity become significantly more tuned.  

C. Brain + muscle patterns stabilize with hBMI therapy 
We hypothesized that long-term training with the hBMI 
system would result in relatively consistent brain and muscle 
patterns (Fig. 1A) since the hBMI gives the participant direct 
feedback about these signals. To assess this, we analyzed a 
subset of sessions in which the simple grasping movement 
“hand open” and “hand closed” that only involved the thumb,  
index, and middle/rink/pinky DOF were required to move to 
achieve the target. Fig 2C shows population pattern for “hand 
open” vs. “hand close” for the same population of neural units 
with the same sorting. Patterns on day 425 look different than 
those on 595, but stabilize by day 717. This observation is 
quantified by characterizing how well trial-average templates 
for hand-open and hand-close can predict held-out single- 
trials. Prediction accuracy significantly increases over the 
clinical trial (Fig. 2D), illustrating that long-term practice of  

the hBMI paradigm does help reinforce consistent brain and 
muscle patterns.  

D. Brain-muscle correlations significantly increase with 
long-term hBMI therapy 

We also hypothesized that long-term training with the hBMI 
would reinforce brain-muscle correlations that might result in 
potentiated cortico-muscular connectivity and rehabilitation. 
We quantified the predictability of sEMG features from the 
brain’s population neural unit activity using a ridge regression 
model (Fig. 2E) to predict held-out trials of sEMG. The R2 of 
the ridge models significantly increased over the hBMI trial 
(Fig. 2F). This increase was not just driven by a single sEMG 
muscle but occurred over many muscles (Fig. 2G).  

E. Clinical improvement  
Here we report the substantial increase in clinical outcome 
observed over the long-term hBMI trial. Pre-measurements 
were taken before the start of the clinical trial, and post-
measurements were taken a few days after the end of the last 
phase of therapy. Follow-up measurements were taken 6 
months after post-measurements. Fig. 3A shows changes in 
the modified Fugl Meyer-Upper Extremity (mFMA-UE: 
scores related to the coordination/speed and reflexes not 
included) impairment clinical scale. The participant shows a 
maximum gain of 15/54 points, and a 12-point stable increase 
at follow-up. Fig. 3B shows changes in the function-based 
tasks of the Wolf Motor Function Test (WMFT) [11]. We 
exclude the two strength-based tasks (weigh to box and grip 
strength measurements). This participant exhibited a 
maximum increase of 31/75 points in the WMFT scale, and a 
24-point stable increase at follow-up. Both the FMA-UE and 
WMFT increases are well above the minimal clinically import 
difference [12], [13]. 

V. DISCUSSION  
Overall, we have demonstrated the first-ever invasive BMI 

therapy for stroke rehabilitation. Others have developed 
invasive BMIs for stroke patients for the purpose of designing 
assistive devices [14], [15], [16], but not for rehabilitation. 
We have also demonstrated, to the best of our knowledge, the 
longest-ever clinical trial totaling a duration of 45 months. 
Generally clinical trials run their interventions for a duration 
of 3-4 months at most, making this trial longer by more than 
an order of magnitude. Most notably, we have demonstrated 

 
Figure 3. A) Changes in modified Fugl-Meyer Assessment for the 
Upper extremity (mFMA-UE) and B) Wolf motor function test (WMFT) 
gains from beginning to end of the hBMI trial. Dashed lines plot range 
or threshold indicating minimal clinically important difference.  
 



  

substantial recovery of a severely-impaired chronic stroke 
patient greater than that previously seen in prior BMI 
therapies [1], [2], [17], or any therapy including 
neuromuscular stimulation [18], robot therapy [19], or 
invasive neuromodulation [20], [21], [22]. These results show 
that substantial recovery still may be possible in the chronic 
phase, particularly if a person still has intact corticospinal 
tracts and voluntary subthreshold muscle activation patterns. 
We also note that this level of recovery has had substantial 
implications for this participant – she is now able to use her 
affected hand to help the unaffected hand in activities of daily 
living. Further, her regained movement now qualifies her for 
therapies that were previously inaccessible, including 
traditional physical therapy.  

The overall hypothesis of this therapy was that jointly 
reinforcing co-activation of brain patterns in perilesional 
cortex and biomimetic muscle patterns over a long duration 
could trigger the potentiation of cortical-muscular 
connectivity. Of course, muscle patterns themselves originate 
from the coordinated activity of distributed cortical and 
subcortical motor control structures, so more accurately, the 
therapy was designed to reinforce supraspinal neural activity 
patterns that both produced biomimetic muscle activations 
and involved perilesional cortex areas that still had remaining 
projections down the corticospinal tract. Prior work 
emphasizes the role of perilesional premotor and 
supplementary motor cortex in recovery from brain injury 
[23], [24]. By using the hBMI to reinforce coordination 
amongst supraspinal networks controlling the musculature, 
we think stronger descending commands became possible 
resulting in better control of movement. Unfortunately, 
directly testing this using transcranial magnetic stimulation 
motor-evoked potentials is not practical as the participant still 
has parts of the intracortical array implanted.  

The main limitation is that this is an N-of-1 study, and so 
the exact characteristics of people that may be able to recover 
to this extent are unknown. We are also unable to determine 
exactly how/to what extent each factor contributed to our 
participant’s recovery given that they received the hBMI 
therapy, as well as a variety of adjuvant neurophysical 
therapies in parallel. Specifically, we cannot say whether the 
invasive implant or the high DOF exoskeleton was truly 
critical or if long-term training in a non-invasive regime with 
a simpler orthosis would have accomplished the same 
endpoints. We hypothesize, based on existing randomized-
control BMI interventions [6], that exoskeleton feedback 
matching the intention to move was a key factor in the 
participants’ experienced benefit. Future work will study the 
brain and muscle patterns from this intervention to see how 
broadly the brain-muscle interactions generalized to 
movements attempted outside of the exoskeleton.  

Overall, we view this work as very promising in the broader 
landscape of post-stroke rehabilitation: we have demonstrated 
unprecedented recovery of a severely impaired chronic stroke 
patient using a novel brain-machine interface therapy over a 
long duration. Despite the participant’s multi-modality and 
severity of symptoms (spasticity, muscular co-contractions, 
complete upper-limb paralysis), this clinical intervention was 
still effective. However, there are many therapeutics that are 

very effective for individual participants but fail to show 
success at a broader population level [25]. Indeed, 
reproducing this effort across the number of participants 
required to demonstrate statistical significance of the therapy 
and identify the components that specifically drove 
therapeutic improvement will be difficult. Instead, we 
propose using the outcome from this trial to support efforts in 
neurofeedback-based and/or myoelectric-based closed-loop 
therapeutics that can be employed by patients in the clinic or 
even in their own home so that they can continue their 
rehabilitation for long durations even in the chronic phase. 
For example, comfortable sEMG sensors designed for long-
term wear could stream data to a soft, wearable orthosis [26] 
to enable myoelectric control. Minimally invasive brain 
implants could also be coupled to such a system enabling 
brain control and/or hybrid control.  
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