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Abstract— People with upper-limb paralysis due
to stroke have limited opportunities for rehabilitation. Most
stroke survivors, however, still have intact corticospinal tract
connectivity and can exhibit voluntary subthreshold muscle
activations. Previous studies demonstrated that these people
can regain a small but significant amount of recovery
following non-invasive brain-machine interface (BMI)
therapy that links brain activity patterns to the movement of
the paretic limb in real-time [1], [2].

In this study, we sought to improve upon existing
BMI therapies in four ways. First, we used an invasive
intracortical multi-electrode array placed directly over areas
of perilesional motor cortex with intact spinal cord
projections, thereby improving the spatial and temporal
resolution of the neural signals used for control. Second, we
leveraged a seven degree-of-freedom rehabilitation robotic
exoskeleton, increasing the complexity of movements that
participants could practice. Third, we developed a novel
hybrid brain-muscle decoding approach that leveraged a
biomimetic model of how functional muscle activations drive
movements, and used this to reinforce co-activation of brain
and non-pathological muscle patterns [3]. Finally, we
performed this rehabilitation over 45 months instead of the
typical 6-8 weeks that most rehabilitation protocols use. Here
we report methodological and preliminary clinical results
from one severely-impaired chronic stroke participant.

Clinical Relevance—This is a proof-of-concept (N=1) of a new
BMI methodology for rehabilitation.

I. INTRODUCTION

Stroke is the leading cause of disability worldwide with a
dramatic increase in the last decade. While there are many
therapy options for people with mild-to-moderate upper limb
impairment such as physical therapy, options for people with
severe impairment are limited. Standard therapeutics typically
leverage the first ~6 months following stroke (i.e. acute phase),
which is associated with upregulation of neuroplastic
mechanisms. Significant recovery following the acute phase
(i.e. the “chronic phase”) is thought to be limited. Thus, people
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who remain severely impaired past the acute phase have
limited prospects for any recovery.

Recent studies have challenged the view that recovery in the
chronic phase is not possible. High-intensity, high-quality
therapy (30 hours/week)  has demonstrated sustained
improvements in arm impairment [4], though how long these
benefits last is less clear [5]. Further, people who are
chronically and severely impaired have demonstrated small
but significant gains in through the use of non-invasive brain-
machine interface (BMI) therapies that link brain activity
patterns to the movement of a worn orthosis on the paretic limb
in real-time [1], [2]. Finally, in many people with chronic and
severe paralysis, while their movement is limited, can still
voluntarily produce muscle activity [6]. Altogether, these
findings led us to hypothesize that an intensive, long-duration,
brain-machine interface therapy that leverages brain and
residual muscle activations would be able to set a new
benchmark for what type of recovery is possible in the
severely-impaired, chronic stroke population. Here we present
the methods and preliminary results from a proof-of-concept
study of this kind (N=1).

II. APPROACH

A. Hybrid BMI clinical trial rationale

BMI robot therapies decode brain signals to move a wearable
orthosis, thereby providing participants with feedback of their
brain patterns through the sensation and vision of movement.
Both factors, when then coupled with conventional physical
therapy, are thought to contribute to improved outcomes
possibly because participants learn to attempt movements in
amore “movement-potent” state [1]. However, in typical non-
invasive BMI therapies, only “move” versus “non-move” can
be decoded out from brain signals, limiting the specificity of
the feedback that can be given.

Here, we design a novel hybrid brain-muscle invasive BMI
therapy. We hypothesize that by recording brain signals
invasively, that our decoder can be more specific about not
only “move” vs. “non-move”, but which direction, speed, and
which effectors of the arm should be moved. We can then
provide this specific feedback to the participant through a 7
degree-of-freedom exoskeleton robot [7]. Lastly, instead of
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Figure 1. A) Rationale of long-duration hybrid BMI therapy, B) hybrid
brain-muscle BMI decoder architecture C) Overview of invasive therapy
including transition from brain-only decoding (purple), to hybrid brain and
muscle decoding (blue/green), to muscle-only decoding (yellow). In some
phases only neurophysical therapy was given (gray). D) Therapy intensity
by phase.

just brain activity contributing to the decoded output of the
BMI, we also leverage subthreshold muscle activations
through multi-electrode surface electromyography (sSEMG)
recordings. SEMG activity is decoded using a biomimetic
SEMG-to-kinematics decoder that has been trained from the
participants’ healthy arm [3], [7]. Together we term the brain
decoder and sSEMG decoders running in parallel as the “hybrid
brain-muscle decoder”.  Brain and muscle contribute
approximately equally to the decoded output (Fig. 1B).

We hypothesized that extensive practice with this novel
hybrid BMI decoder along with neurophysical therapy will
serve to 1) reinforce stable, movement-specific brain patterns
in a part of the brain with intact spinal cord connectivity, 2)
reinforce stable, albeit subthreshold, biomimetic muscle
patterns, 3) reinforce cortico-muscular correlations resulting
in potentiated cortico-muscular connectivity, and finally 4)
result in rehabilitation of the participant’s upper limb during
movements outside the hybrid BMI setting (Fig. 1A).

B. Hybrid BMI clinical trial overview

This work was conducted as part of the ISMORE clinical trial
approved by AEMPS (Spanish Agency of Medicine and

Sanitary Products) registered online (link here). The trial
recruits severely-impaired chronic stroke participants (>9
months post-stroke) with paralysis of one hand (no residual
active finger extension) and a Medical Research Council
score of <2 for upper limb movement. Participants undergo a
non-invasive familiarization phase of ~2 months in which
they practice exoskeleton brain-control using EEG patterns.
At the end of this phase, they then undergo an invasive
microelectrode array brain implant localized to a section of
perilesional motor cortex that still has intact connectivity to
the spinal cord (measured through diffusion tensor images,
DTI). Using this implant, the participants then control the
exoskeleton using just brain activity (100% brain), then
hybrid brain and muscle activity (hybrid: 50% brain, 50%
muscle), and then just muscle activity (100% muscle) (Fig.
1C). Throughout all phases of the trial, participants receive
exercise therapy based on central and spinal
neurophysiological  circuitry, mirror therapy, and
biomechanical and soft tissue interventions. Here, we report
the results from one participant who underwent the clinical
trial from 2017 through 2021 (45-month duration).

III. METHODOLOGY

A. Hybrid BMI system architecture

Key components of the BMI system architecture include the
1) 7 degree-of-freedom robotic exoskeleton, 2) invasive
microelectrode array and acquisition hardware, 3) sEMG
recording electrodes and hardware, 4) BMI machine that
aggregated data, was used to train decoders, and send
commands to a visual feedback screen and the exoskeleton
robot, 5) Decoding algorithms and approaches themselves.
Below we review each of these components:

1) Exoskeleton robot
The robotic exoskeleton (Tecnalia, San Sebastian, Spain) was
attached to the participant’s paretic upper limb as schematized
in Fig. 1B. The robot allowed the patient to perform planar
arm movements (2 DOFs) and rotations (1 DOF), wrist
pronation and supination (IDOF), and thumb, index, and
middle/ring/pinky finger flexion and extension (3 DOFs).

2) Intracortical electrode array & acquisition hardware
A Blackrock Utah array (NeuroPort, 1.5mm electrode length,
4x4 mm size, 96 channels) was inserted into perilesional
premotor cortex of the participant in the hand and arm area.
The specific implantation site was determined through
tractography performed on DTI, where the tract seeds were
placed in the pons and traced up to cortex to identify sections
of cortex with intact corticospinal tract connectivity. Once the
implantation procedure was completed and following 3 days
of recovery from surgery, the array was connected to the
Neural Signal Processor system (Blackrock Microsystems),
and signals were acquired at 30kHz and processed in the
Cerebus software. Single and multi-unit action potentials
were isolated by first bandpass filtering signals between 250-
6kHz and either manually spike sorting or setting a threshold
of -5 RMS. For the first year of the trial, units were identified
via manual spike sorting at the start of each session.
Following the first year, once recordings stabilized, an
automatic threshold crossing approach was used for
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expediency. Spike sorted or unsorted threshold data was
streamed to the BMI computer over ethernet. In this paper we
refer to single-units, multi-units, or threshold crossings
generally as “neural units”.
3) SEMG recording electrodes & acquisition hardware
At the start of each session, 14 pairs of surface Ag/AgCl
bipolar electrodes (Norotrode 20, Myotronics) were placed on
the following upper limb muscles: First dorsal interosseous,
Abductor pollicis longus, Extensor carpi ulnaris, Extensor
carpi radialis, Extensor digitorum, Flexor digitorum
superficialis, Flexor carpi radialis, Pronator teres, Biceps,
Triceps, Deltoid anterior, Deltoid medialis, Teres major, and
Pectoralis major. Electrode positions were marked using
permanent marker on the skin to reduce session-to-session
drift in electrode placement. A ground electrode was placed
on the clavicle. Data was acquired at 1000 Hz by a BrainAmp
system (BrainVision) and streamed into the BMI computer
over ethernet. EMG features were computed on the BMI
computer and included mean absolute value, variance,
waveform length, root mean square, and Willison amplitude.
4) BMI computer

Data from the intracortical array and sEMG sensors was
aggregated on the BMI machine running a custom python
interface. Data streams were acquired in parallel processes,
pre-processed, ported to their respective decoders, and finally
combined (if hybrid). Prior to sending the velocity commands
to the exoskeleton, a previously-defined user-specific safety
boundary was consulted to ensure that the exoskeleton would
not move into a position or at a velocity that was
uncomfortable for the participant. The exoskeleton velocities
were updated at a rate of 20 Hz.

The BMI machine also ran the task logic for the
exoskeleton training paradigm. The task was typically a target
acquisition task in which the target consisted of a specific
location/angle of all 7 DOFs, and a subset of DOFs were
required to enter the target with certain tolerance to be
considered a successful acquisition. As the participant grew
more proficient and comfortable in the exoskeleton, target
locations/angles were made further and further from the
consistent “home” location.

The BMI machine also rendered a visual graphic of the
target exoskeleton and the current position/orientation of the
exoskeleton that the participant was controlling. This
visualization updated in real-time, giving the participant clear
feedback about which DOFs were in vs. out of the target.

5) Brain, muscle, and hybrid decoding algorithms

The brain decoder was a velocity Kalman filter decoder
designed to predict exoskeleton position and velocity (hidden
state) based on population spike counts binned in 100ms bins
(observations). As in [8], both position and velocity were
included in the hidden state to account for the influence of
both on brain activity, but the participant directly controls
velocity with measured neural signals. The decoder was
trained and adapted using existing methods [9], [10].
Specifically, to train the decoder, once spike sorting or
thresholding was completed at the beginning of each session,
the participant was asked to attend to and actively try to
generate appropriate muscle activity as the exoskeleton
played through a series of pre-programmed movements

involving all degrees of freedom. We refer to this type of
block as “compliant movements”. Once the decoder was
trained, a block of closed-loop decoder adaptation with a
linearly decreasing assist was run. Once control was
acceptable (similar to previous sessions), the decoder was
fixed for that session. In early phases (e.g. 2, 3, 4) decoder
seeding and adaptation were run daily. In later sessions when
neural unit recordings had stabilized, daily decoder re-seeding
and adaptation were stopped. The same decoder was then
used day-to-day.

The sEMG decoder was a linear regression model that
predicted kinematic velocities to send to the exoskeleton
every 50ms from sEMG features. Two different variants of
the SEMG decoder were devised: 1) prediction of kinematic
velocities directly from sEMG features, 2) prediction of
kinematic state (e.g. open vs. close hand) that was then
mapped onto kinematic velocities. Both decoders were
trained from sEMG signals recorded from the participant’s
unaffected (left) arm while they were wearing a left-armed
exoskeleton and performing blocks of “compliant
movements”. Notably, when the decoders were trained the
sEMG features were z-scored. Thus, even though the
participant could not generate the same levels of amplitude or
modulation with their paretic limb as they could with their
unaffected limb, the decoders would successfully predict
kinematics if the relative activities of the muscles were correct
(e.g. agonists activating, antagonists inhibiting). If the
participant had developed muscle synergy patterns that were
not typical of healthy muscle patterns (e.g. agonist antagonist
co-activation), the robot would not move, encouraging the
participant to try to generate more biomimetic muscle
patterns. Generally, the first type of decoder (directly predict
kinematics) performed well for kinematics of the upper arm
DOFs  (planar arm  translation and  rotation,
pronation/supination) whereas the second type of decoder
(predict states) performed better for kinematics of the hand
DOFs (finger extension/flexion).

The hybrid decoder initially linearly combined predicted
velocities from the brain and muscle decoders’ outputs
(equation 1). After sufficient practice though, it became
apparent that the participant could just rely on one type of
signal (brain or muscle) to advance the exoskeleton towards
the target location. To encourage co-activation, a new
multiplicative rule was introduced mid-way through the trial
that required the brain and muscle signals to both be
advancing towards the target for the exoskeleton to move
(equation 2).

1Jelhybrid =05+ velbrain + 0.5 * 1-7elmuscle (1)

if sign(vely,qim) == sign(velyscie): 2)
velpypria = 0.5 % Velprgin + 0.5 * velyysce

else:
velpypria = 0

B. Adjuvant neurophysical therapy

Prior to and following hybrid BMI sessions, four trained
physiotherapists and one osteopath provided customized,
complementary therapy that targeted stretching the soft
tissues and tendons, practicing active movements outside of
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Figure 2. A) Average firing pattern for open (red) vs. close (blue) for units recorded on Day 41 (phase 1) vs. Day 658 (Phase 10). B) Fraction of units and
muscle features that are have significantly different patterns for open vs. close significantly increases over hBMI training (t-test for significant slope: left:
N=234 sessions, p < 0.001, right, N =254, p < 0.001) C) Within-session average firing pattern for open vs. close for units recorded after change from
manual spike sorting to threshold crossing. Same units recorded, same unit ordering. D) Within-session pattern consistency is measured by using a trial-
average template to predict held-out trial patterns. The correlation coefficient of the prediction significantly increases over recovery for single-unit brain
patterns and SEMG features (t-test for significant slope: left: N = 234 sessions, p < 0.001, right: N =254, p < 0.001). E) Using ridge regression to quantify
the predictability of SEMG features from brain single-unit activity. F) Predictability of SEMG features significantly increased over the hBMI trial (t-test for
significant slope: N = 134, p < 0.001) G) Many muscle features become more predictable.

the exoskeleton, mirror therapy, and focusing on functional
movements that could not be trained in the robotic
exoskeleton. As previous studies have hypothesized that BMI
therapies serve as a ‘priming’ of the sensorimotor system for
improved learning and rehabilitation from physical therapy
[1], it was important to our study to have high-quality, high-
dosage, neuro-biomechanical therapy along with the BMI.

C. Participant 1

Participant #1 was a woman who suffered an ischemic stroke
at the age of 55. The stroke affected cortico-subcortical
structures in the left fronto-posterior and parietal areas
resulting in severe hemiplegia of her right upper limb. She had
a NIHSS score of 5, spasticity in her hand, and preserved
somatosensation, as confirmed by a neurologist. After
discharge from the stroke unit, the patient received a series of
inpatient and outpatient rehabilitation therapies over the
following 7 months, which ended with a stable severe upper
limb paresis. At the time of enrollment in the clinical trial, the
patient was 59 years old, had not received any rehabilitative
treatment during the previous 39 months and remained
chronically impaired (46 months since stroke). She presented
an averaged baseline upper-limb modified Fugl-Meyer
assessment (MFMA-UE) motor score of 9, MRC <2 for upper
limb movement, an ARAT score of 0, and a Wolf Motor
Function Test (WMFT) score (excluding weigh to box and

grip strength) score of 13.5. The participant presented no
residual finger extension nor movement of the hand, almost
zero elbow and shoulder flexion/extension ability and severe
spasticity of the upper arm that impeded the use of the paretic
upper limb and hand in functional unimanual or bimanual
tasks.

D. Data analysis

Since the participant was very focused on improving hand
opening and closing, there are many hBMI sessions dedicated
to training that movement. In Fig. 2, neural units and muscle
features were analyzed during hand-open and hand-close
hBMI blocks.

Neural units were summed in bins of 100ms (same update
rate as the brain decoder). Muscle features were calculated
in bins of 50ms and were z-scored based on the mean and
standard deviations computed from a block of the same
compliant movements performed at the beginning of each
session.

Neural units or sSEMG features were averaged across the
first 5 seconds of an open or close trial and were aggregated
over all trials on a particular session. In Fig. 2B, units or
features were considered “tuned” if they showed significantly
(measured by p < 0.05 on a Mann-Whitney U test ) different
patterns between hand-open and hand-close. In Fig. 2D,
neural units and sSEMG trials were subsampled and averaged



to create an open and close trial-averaged template. The
correlation between this template and held-out trials was
computed. This process was repeated 50 times with different
subselections of trials, and averaged to yield a single
correlation coefficient value for each session. A similar
approach was taken in Fig. 2F but instead of a template, a set
of Ridge regression models were fit from population brain
activity (z-scored, according to means/standard deviations
derived from a compliant block) to predict individual SEMG
features (Fig. 2E). Held out data was predicted with the Ridge
models and variance explained (R?) aggregated over SEMG
features (Fig. 2F) and displayed for each sSEMG feature (Fig.
2G) is shown.

IV. RESULTS

A. Trial duration

The clinical trial was run in participant #1 for 45 months (July
2017 — March 2021). The initial months included a battery of
clinical scales, neuroimaging, and a non-invasive BMI
familiarization phase. After array implantation in Sept 2017,
Fig 1D shows the average number of hours per week that the
participant underwent therapy interventions. Though initially
very intense with a peak of 25 hrs/week, the therapy plateaued
to become more sustainable at ~8 hrs / week for most of the
months. To our knowledge this is the longest therapeutic
intervention ever attempted in a stroke patient.

B. Significant modulation of brain and muscle patterns
with long-term hBMI therapy

Since the hBMI therapy required both brain and muscle
patterns to modulate to enable the exoskeleton to reach
targets, we first tested how the number of recorded neural
units and muscle features changed in their modulation over
the course of the trial. Fig. 2A shows an example of the
average firing pattern for the population of neural units during
open (red) vs. close (blue) trials early in the trial (left, Day 41,
Phase 1) and late in the trial (right, Day 658, Phase 10). While
the population consists of different units, more units show
different firing during open vs. close later in the trial. We
quantified this effect for brain units and muscle features (Fig.
2B) and found that over the course of the trial both brain and
muscle activity become significantly more tuned.

C. Brain + muscle patterns stabilize with hBMI therapy

We hypothesized that long-term training with the hBMI
system would result in relatively consistent brain and muscle
patterns (Fig. 1A) since the hBMI gives the participant direct
feedback about these signals. To assess this, we analyzed a
subset of sessions in which the simple grasping movement
“hand open” and “hand closed” that only involved the thumb,
index, and middle/rink/pinky DOF were required to move to
achieve the target. Fig 2C shows population pattern for “hand
open” vs. “hand close” for the same population of neural units
with the same sorting. Patterns on day 425 look different than
those on 595, but stabilize by day 717. This observation is
quantified by characterizing how well trial-average templates
for hand-open and hand-close can predict held-out single-

trials. Prediction accuracy significantly increases over the
clinical trial (Fig. 2D), illustrating that long-term practice of

A Maximum: 54 B Maximum: 75
o 20
g _— 230 [mmmmmmm e
s |D2Z232231 38
T}
5 10 = 20
< =
10
= =
€ o 0
Pre Post Pre Post

Figure 3. A) Changes in modified Fugl-Meyer Assessment for the
Upper extremity (mFMA-UE) and B) Wolf motor function test (WMFT)
gains from beginning to end of the hBMI trial. Dashed lines plot range
or threshold indicating minimal clinically important difference.

the hBMI paradigm does help reinforce consistent brain and
muscle patterns.

D. Brain-muscle correlations significantly increase with
long-term hBMI therapy

We also hypothesized that long-term training with the hBMI
would reinforce brain-muscle correlations that might result in
potentiated cortico-muscular connectivity and rehabilitation.
We quantified the predictability of SEMG features from the
brain’s population neural unit activity using a ridge regression
model (Fig. 2E) to predict held-out trials of SEMG. The R? of
the ridge models significantly increased over the hBMI trial
(Fig. 2F). This increase was not just driven by a single SEMG
muscle but occurred over many muscles (Fig. 2G).

E. Clinical improvement

Here we report the substantial increase in clinical outcome
observed over the long-term hBMI trial. Pre-measurements
were taken before the start of the clinical trial, and post-
measurements were taken a few days after the end of the last
phase of therapy. Follow-up measurements were taken 6
months after post-measurements. Fig. 3A shows changes in
the modified Fugl Meyer-Upper Extremity (mFMA-UE:
scores related to the coordination/speed and reflexes not
included) impairment clinical scale. The participant shows a
maximum gain of 15/54 points, and a 12-point stable increase
at follow-up. Fig. 3B shows changes in the function-based
tasks of the Wolf Motor Function Test (WMFT) [11]. We
exclude the two strength-based tasks (weigh to box and grip
strength measurements). This participant exhibited a
maximum increase of 31/75 points in the WMFT scale, and a
24-point stable increase at follow-up. Both the FMA-UE and
WMET increases are well above the minimal clinically import
difference [12], [13].

V. DISCUSSION

Overall, we have demonstrated the first-ever invasive BMI
therapy for stroke rehabilitation. Others have developed
invasive BMIs for stroke patients for the purpose of designing
assistive devices [14], [15], [16], but not for rehabilitation.
We have also demonstrated, to the best of our knowledge, the
longest-ever clinical trial totaling a duration of 45 months.
Generally clinical trials run their interventions for a duration
of 3-4 months at most, making this trial longer by more than
an order of magnitude. Most notably, we have demonstrated



substantial recovery of a severely-impaired chronic stroke
patient greater than that previously seen in prior BMI
therapies [1], [2], [l7], or any therapy including
neuromuscular stimulation [18], robot therapy [19], or
invasive neuromodulation [20], [21], [22]. These results show
that substantial recovery still may be possible in the chronic
phase, particularly if a person still has intact corticospinal
tracts and voluntary subthreshold muscle activation patterns.
We also note that this level of recovery has had substantial
implications for this participant — she is now able to use her
affected hand to help the unaffected hand in activities of daily
living. Further, her regained movement now qualifies her for
therapies that were previously inaccessible, including
traditional physical therapy.

The overall hypothesis of this therapy was that jointly
reinforcing co-activation of brain patterns in perilesional
cortex and biomimetic muscle patterns over a long duration
could trigger the potentiation of cortical-muscular
connectivity. Of course, muscle patterns themselves originate
from the coordinated activity of distributed cortical and
subcortical motor control structures, so more accurately, the
therapy was designed to reinforce supraspinal neural activity
patterns that both produced biomimetic muscle activations
and involved perilesional cortex areas that still had remaining
projections down the corticospinal tract. Prior work
emphasizes the role of perilesional premotor and
supplementary motor cortex in recovery from brain injury
[23], [24]. By using the hBMI to reinforce coordination
amongst supraspinal networks controlling the musculature,
we think stronger descending commands became possible
resulting in better control of movement. Unfortunately,
directly testing this using transcranial magnetic stimulation
motor-evoked potentials is not practical as the participant still
has parts of the intracortical array implanted.

The main limitation is that this is an N-of-1 study, and so
the exact characteristics of people that may be able to recover
to this extent are unknown. We are also unable to determine
exactly how/to what extent each factor contributed to our
participant’s recovery given that they received the hBMI
therapy, as well as a variety of adjuvant neurophysical
therapies in parallel. Specifically, we cannot say whether the
invasive implant or the high DOF exoskeleton was truly
critical or if long-term training in a non-invasive regime with
a simpler orthosis would have accomplished the same
endpoints. We hypothesize, based on existing randomized-
control BMI interventions [6], that exoskeleton feedback
matching the intention to move was a key factor in the
participants’ experienced benefit. Future work will study the
brain and muscle patterns from this intervention to see how
broadly the brain-muscle interactions generalized to
movements attempted outside of the exoskeleton.

Overall, we view this work as very promising in the broader
landscape of post-stroke rehabilitation: we have demonstrated
unprecedented recovery of a severely impaired chronic stroke
patient using a novel brain-machine interface therapy over a
long duration. Despite the participant’s multi-modality and
severity of symptoms (spasticity, muscular co-contractions,
complete upper-limb paralysis), this clinical intervention was
still effective. However, there are many therapeutics that are

very effective for individual participants but fail to show
success at a broader population level [25]. Indeed,
reproducing this effort across the number of participants
required to demonstrate statistical significance of the therapy
and identify the components that specifically drove
therapeutic improvement will be difficult. Instead, we
propose using the outcome from this trial to support efforts in
neurofeedback-based and/or myoelectric-based closed-loop
therapeutics that can be employed by patients in the clinic or
even in their own home so that they can continue their
rehabilitation for long durations even in the chronic phase.
For example, comfortable SEMG sensors designed for long-
term wear could stream data to a soft, wearable orthosis [26]
to enable myoelectric control. Minimally invasive brain
implants could also be coupled to such a system enabling
brain control and/or hybrid control.
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